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SEPARATION SCIENCE AND TECHNOLOGY, 22(1), pp. 121-139, 1987 

General Theory of Quasi-Static Linear Gradient 
Chromatography 

TSUTOMU KAWASAKI 
JAPAN BIOMEDICAL. MATERIAL RESEARCH CENTER 
KOKEN CO. LTD. 
2-11-21 NAKANE, MEGURO-KU, TOKYO 152, JAPAN 

Abstract 

The earlier theory of hydroxyapatite chromatography is extended to a general 
theory of quasi-static linear gradient chromatography. The present theory is 
partially valid for the nonquasi-static case. 

INTRODUCTION 

In earlier papers ( 2 - 2 2 )  a theory of linear gradient hydroxyapatite (HA) 
chromatography was developed. The major part of the theory is valid for 
any quasi-static chromatographies (see Appendix I); some parts are even 
valid for the nonquasi-static case. 

The purpose of the present paper is to rearrange the earlier theory (2- 
I f ) ,  specifying the parts that are common to any chromatography, 
thereby establishing a general theory of linear gradient chromatography. 
In order to simplify the argumen, however, we here limit ourselves to the 
case where mutual molecular interactions are negligible. 

Brief explanations of any symbols involved in the equations are given 
at the end of this paper. 
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THEORETICAL 

KAWASAKI 

(A) Fundamental Continuity Equation for Gradient Chromatography 

The purpose of this section is to confirm that Eq. (21) in Scheme 1 (pp. 
123-125) (first derived as Eq. 17 in Ref. 3 for HA chromatography) is 
quite general, and that it represents the fundamental continuity equation 
for any quasi-static chromatography with linear gradient elution. 

Scheme 1 briefly summarizes the derivation of Eq. (21). Thus, Eq. (21) 
can be derived from Eq. (l), a continuity equation for any quasi-static 
chromatography; Eq. (1) is based upon a spontaneous image under- 
standable from the first point of view on gradient chromatography 
(Appendix 11). However, although an isocratic chromatographic process 
can be causal& described by Eq. (l), it is impossible in principle for a 
gradient chromatographic process to be described by Eq. (1); it is Eq. (21) 
that causally describes the gradient chromatography (see Ref. 3). Equa- 
tion (21) is based upon an abstract image understandable from the 
second point of view (Appendix 11). 

Let us follow the derivation of Eq. (21) (or Eq. 24) from Eq. (1) in 
Scheme 1. Thus, Eq. (4) is first derived from Eq. (1) by using elution 
volume V instead of time t; the transformation from t to V is possible 
since, in the first point of view, V increases with t (Appendix 11). In other 
words, V is a chromatographic expression of time. 

Equation (6) is a more precise expression of Eq. (4) in which account is 
taken of the thermal Brownian longitudinal diffusion in the interstitial 
liquid in the column that is negligible in the quasi-static case (Appendix 
1). 

The derivation of Eq. (8) from Eq. (6) is carried out following a 
hypothesis according to which any type of flow heterogeneity (Appendix 
I) declines and becomes negligible in the column. As a result, with Eq. (8), 
no longitudinal diffusions survive in the column except Brownian 
diffusion. 

Equation (14) represents the ideal case when even the Brownian 
longitudinal diffusion has declined completely and become null. The 
derivation of Eq. (14) from Eq. (8) is a key point in understanding the 
theory of gradient chromograpfy; the ideal equation with no longitudinal 
diffusion in the column (Eq. 14) can be obtained by substituting Fick's 
second law (Eq. 9 or 12) into Eq. (8). (The situation can be compared with 
the case of isocratic chromatography when the ideal equation with no 
longitudinal diffusion can be obtained if Dthem or Othem tends to 0. For 
details, see Ref. 1, Appendix 11.) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
1
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



THEORY OF GRADIENT CHROMATOGRAPHY 

8 = D’/(dV/dt) 

Iv,’,~ = dV/dt 

123 

J 

II 
A 

P 

(1)  
an 
at 

div,.[B(L’,m)v’,,R - D’B(L’,m)grad,tfl] + ~ = 0 

II 

/ \ - 
(4) 

an 
av divr[B(Lf,rn)i2 - BB(L’,m)grad,.n] + ~ = 0 

A an 
av div,.[B(L’,m)n - B,,,,grad,C - 8B(L’,rn)gradLfn] + ~ = 0 

( 6 )  

- 0 etherm (7) 1 
an 
av 

- 
div,.[B(L’,m)R - BIh,,grad,.C] + - = 0 

Dthe,ALC = d C / d t  (Ficks second law) (9) 

(con tin ued) 
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124 KAWASAKI 

v = LI, - L' = (m - mi,)/g' 

s = mo - m = g'L' I- - l-f 
dh7[ B(m)  x = 0 (intermediate abstract flow) (17) 1 - B ( m )  

C = B f l  

{Eq. (13) i 
First 

point of 
view 

Second 
point of 

view 

- - - - - -_-__------  f 

- e = o  I 
(continued) 
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THEORY OF GRADIENT CHROMATOGRAPHY 125 

(fundamental differential equation for gradient 
chromatography) 

g'0  = D*/(ds /d t )  

1.3 = dsldt 

J* 
II 

SCHEME 1.  Derivation of the fundamental differential equation for gradient chromtography. 

Equation (17) is another expression of Eq. (1 4) represented in terms of 
variables s and m instead of L' and K respectively. Since g' is constant, s 
and m increase with increases in L' and V(i.e., I) ,  respectively (see Eqs. 15 
and 16). In other words, s and m still conserve the physical meanings of 
spatial coordinate and time, respectively. (The flow represented by Eq. 17 
is called intermediate abstract flow; Eq. 17 is used for the approximate 
theory of gradient chromatography in which account is taken of mutual 
molecular interactions; see Refs. 8 and 11.) 

The derivation of Eq. (19) from Eq. (17) is another key point in 
understanding the theory of gradient chromatography. Thus, the trans- 
formation from Eq. (17) to Eq. (19) corresponds to the transfer from the 
first to the second point of view on gradient chromatography (Appendix 
11); spatial coordinate L' or s in the first point of view is reinterpreted as 
time in the second point of view, and time V or m is reinterpreted as 
spatial coordinate. Equation (19) (as well as Eq. 17, which is equivalent to 
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126 KAWASAKI 

Eq. 19 except for the point of view) represents the fundamental continuity 
equation with linear gradient chromatography for the ideal case when 
there is no  longitudinal diffusion in the column. Equation (19) (or Eq. 17) 
also represents the behavior of the mean part, with an infinitesimal 
width, of the actual molecular band migrating on the column; in this part 
of the band the effect of diffusion is always canceled out, and the 
relationship RF = B is fulfilled (see Appendix 111). 

The fundamental differential equation, Eq. (21), can be derived from 
Eq. (19) by adding a diffusive term to Eq. (19). For the determination of 
the form of the diffusive term, see below. 

Equation (24) is another expression of Eq. (21) obtained by using time t 
instead of “time” s. The form of the diffusive term in Eq. (24) is 
determined by comparing Eq. (24) with Eq. (1); it is determined in order 
for the abstract flux J* (in Eq. 24) to coincide, at any instant t, with the 
actual flux J (in Eq. 1) at the outlet of the column (see Ref. 3). The form of 
the diffusive term in Eq. (21) can be derived from the diffusive term in Eq. 

The process of deriving Eq. (24) from Eq. (1) is reversible, i.e., Eq. (1) 
can be derived from Eq. (24). This means that Eq. (24) or (21) is valid for 
any quasi-static chromatography with linear gradient elution since Eq. 
(1) represents a continuity equation for any quasi-static chromatography. 

Scheme 1 itself constitutes a proof that the gradient chromatographic 
process can be CQUSQ~~Y described by Eq. (21) instead of Eq. (1) (see Ref. 1, 
Appendix 11, and Ref. 3). Another proof is given in the section entitled 
“General Method of Finding the Flux in Any Type of Chromatography” 
in Ref. 3 

On the basis of the first principle of chromatography (Appendix HI), it 
can be understood that Eqs. (14), (17), and (19) are even valid for the 
nonquasi-static case. In fact, even in the nonquasi-static case, the 
relationship R ,  = B is fulfilled in the mean part of the molecular band 
migrating on the column, and Eqs. (14), (17), and (19) represent the 
behavior of this part of the band. 

The theoretical chromatogram can be obtained 1) if Eq. (21) is solved 
under a suitable initial condition, and 2) if a backtransfer is made from 
the second to the first point of view on gradient chromatography, giving s 
the physical meaning of the product of the slope g’ of the concentration 
(or activity) gradient and the total length L’ of the column (see Eq. 16). 
[Hereafter we simply use “concentration” instead of “concentration (or 
activity)”.] 

(24). 
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THEORY OF GRADIENT CHROMATOGRAPHY 127 

(B) Form of the Function B(s,m) 

The purpose of this section is to determine a possible form of the 
function B(s,m) appearing in Eq. (21). 

With quasi-static chromatography it is reasonable to assume (a) that 
the longitudinal diffusion of the sample molecules occurs in parallel with 
that of the gradient element in the column (since both diffusions are 
directly provoked by the first type of flow heterogeneity in the carrier 
liquid, see Appendix I; for gradient element, see Appendix II), and (b) 
that the linear concentration gradient is virtually undisturbed by 1) the 
(longitudinal) diffusion of the gradient element in the column (the 
diffusion effect is canceled out among different column sections), 2) the 
presence of the sample molecules, and 3) the fixation (if it occurs) of the 
gradient element on the packed particles in the column. 

Now, let us suppose the case when a band of the sample molecules with 
an infinitesimal width is formed initially at the inlet of the column. When 
the migration of the molecular band begins, the width of the band 
becomes finite due to diffusion. Under this situation, the function B(s,m) 
has the form 

where the function mk(s,m) is represented implicitly as 

m = mh + r (mh)  - s (26) 

with 

From its physical meaning (see the explanation of the symbols at the end 
of the paper) it can, in general, be assumed that B‘ is a monotonical 
function of mh, increasing from “0 to 1 with an increase in mh from mi,  to 
m. 

ProoJ (Step 1) Let us divide the column into a number of hypothetical 
microcolumns with diameters of the order of magnitude of the inter- 
distances among packed particles in the column (cf. Appendix I). We 
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128 KAWASAKI 

characterize the microcolumns in such a way (a) that the volume of the 
liquid that flows into (and out of) any microcolumn is the same within 
any unit time interval, and (b) no longitudinal diffusion occurs within a 
microcolumn. [Actually, Hypothesis b is unrealizable. With quasi-static 
chromatography, however, the longitudinal diffusion within the micro- 
columns is negligible in comparison with the diffusion that is directly 
provoked by the first type of flow heterogeneity in the carrier liquid 
(Appendix I). This means that Hypothesis b, although it is untrue, is a 
reasonable assumption for the final result of the calculation.] 

Let us consider the state within any cross section of the total column 
existing between positions L' and L' + dL' at time t. When the mean 
concentration of the gradient element in this column section is between 
m and m + dm, then the concentrations m, of the gradient element within 
the cross sections of the microcolumns (belonging in this total column 
section) are distributed around the mean value m (as a result of 
longitudinal diffusion). Therefore, in some microcolumns the concentra- 
tion of the gradient element is distributed within a certain infinitesimal 
range between m, and m, + dm,. On the other hand, since (a) a band of 
the sample molecules with an  infinitesimal width is formed initially at 
the inlet of the column, (b) the longitudinal diffusion of the sample 
molecules occurs in parallel with that of the gradient element in the 
column (provoked by the first type of flow heterogeneity; Fundamental 
Assumption a), and (c) no longitudinal diffusion occurs within a 
microcolumn (Hypothesis b), then it is only in some microcolumns in 
which the concentration of the gradient element resides within a certain 
infinitesimal range (between m, and m, + dm,) that sample molecules 
appear at time t. This means that the function B(s,m) has a form 
represented by Eq. (25); it can be considered that m, is a function of both 
m and s because m, depends upon both the mean concentration m and 
the distribution in the concentration. This latter depends upon "time" 

(Step 2) Let us consider the state within a microcolumn in which a 
molecular band with an infinitesimal width is migrating. The migration 
of the band can be described (see Ref. 3, Appendix) by 

S. 

where 

s, = g'Li 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
1
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



THEORY OF GRADIENT CHROMATOGRAPHY 129 

and L; represents the longitudinal position of the infinitesimal molecular 
band in the microcolumn; in Eq. (28), mh represents the concentration of 
the gradient element at position L;. Since, at the inlet of the column, both 
relationships 

and 

mh = mi, (31) 

are initially fulfilled, Eq. (28) can be integrated to give 

where r(m3 is defined by Eq. (27). On the other hand, sh can be written 
as 

sh = m,  - mh (33) 

(see Ref. 3, Appendix), and, by substituting Eq. (32) into Eq. (33), 

r(mJ = m, - mh (34) 

is obtained. Now, by eliminating m, between Eq. (34) and the left-hand 
side equation in Eq. (16), Eq. (26) can be obtained. 

(C )  Solution of Eq. (21) 

We here consider solving Eq. (21) when the function B(s,m) has a form 
represented by both Eqs. (25) and (26). It should be recalled, however, 
that a physical meaning has been given to Eq. (25) only when the initial 
molecular band at the inlet of the column has an infinitesimal width (see 
Section B). We therefore solve Eq. (21) under the compatible initial 
condition: 

(for a more precise expression of Eq. 35, see Ref. 5). It should be 
emphasized that, although Eq. (21) might have solutions under other 
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130 KAWASAKI 

initial conditions [provided the function B(s,m) is represented by both 
Eqs. 25 and 261, the physical meanings of these solutions are unclear. 

Under the condition of Eq. (35), Eq. (21) has a solution 

(This can be confirmed if Eq. 36 is substituted into Eq. 21, although the 
calculation is somewhat laborious.) If the backtransfer is made from the 
second to the first point of view (giving s the physical meaning of the 
product ofg' and L'), then Eq. (36) represents, with Eq. (26), a theoretical 
chromatogram as a function of rn for a column of length L' and a slope g' 
of the concentration gradient. 

(D) Approximate Expression of Eq. (21) and the Theoretical 
Chromatogram Obtained under Any Initial Condition 

The purpose of this section is to derive a simpler expression of Eq. (21); 
this can be solved under any initial condition, and the theoretical 
chromatogram under any initial chromatographic condition can be 
obtained. 

Thus, in many instances, the range of the concentration gradient over 
which a chromatographic peak appears is small around the concentra- 
tion p at which the mean part of the peak exists. Under the approxima- 
tion that the concentration over which a chromatographic peak appears 
is constant, being equal to p, Eq. (21) reduces to a simpler equation: 

where 

and p(s) can be implicitly represented by 
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THEORY OF GRADIENT CHROMATOGRAPHY 131 

(for the derivation of Eq. 37, see below and Ref. 6). Under a general initial 
condition: 

C(s = + O , r n )  = Co(m)  (40) 

where Co(m) is any function. Equation (37) has a solution: 

where 

[The solution (Eq. 41) can be obtained by using the Fourier transforma- 
tion method; see Ref. 6.1 If the backtransfer is made from the second to 
the first point of view, Eq. (41) represents a theoretical chromatogram 
obtained under any initial chromatographic condition. In the special 
case when the initial condition, Eq. (40), has the form of Eq. (39, Eq. (41) 
reduces to a Gaussian form: 

(see Ref. 6). 
The approximate differential equation, Eq. (37), can be derived in the 

following way. First, Eq. (43) is derived from the pair of Eqs. (26) and (36) 
by carrying out a Taylor expansion of T(mJ around p, and neglecting high 
order terms (4, 6). Second, the form of the differential equation, Eq. (37), 
is determined in order for it to generate Eq. (43) as a solution under the 
initial condition given by Eq. (35) (6). What is important is that Eq. (37) 
can generate a solution (Eq. 41) under the general initial condition given 
by Eq. (40). 

(E) Competition Model 

If the fixation (adsorption) and dissociation (desorption) mechanism 
of the sample molecules in the column is specified, the concrete form of 
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132 KAWASAKI 

the function B’(m’) (where m‘ may be mh or p; cf. Eqs. 26,27,36,38,39,41- 
43) can be determined, and the concrete theoretical chromatogram can 
be obtained. 

In earlier papers (I-12) a competition model was introduced for the 
adsorption and desorption mechanism in the HA column. The model 
states that adsorbing sites are arranged in some manner on the surfaces 
of the packed particles (HA crystals) in the column; the sample molecules 
(with adsorption groups) and the gradient element compete for adsorp- 
tion onto the sites of the packed particles. A gradient element covers a 
single site when it is adsorbed, whereas a sample molecule, in general, 
covers plural sites. On the basis of the competition model, the function 
B’(m’) can be represented (see Ref. 2, Appendix I) as 

1 B‘(m’)  = 
1 + q((P’m’ + l)-‘ (44) 

where q, cp’, and x’ are positive constants. x’ represents the number of 
adsorbing sites of the packed particle covered by an adsorbed sample 
molecule. 

By using Eq. (44), both Eqs. (39) and (42) can be rewritten as 

and 

a(s) = d m (  1 + q[cp’p(s) + 11-”’1 (46) 

respectively. If the sample molecule has large molecular dimensions 
(x’ >> l), p(s) (Eq. 45) tends to a constant value m0 independent of s; a(s) 
(Eq. 46) tends to at the same time (see Refs. I and 3). 

DISCUSSION 

The present theory of gradient chromatography consists of (a) 
proposing an abstract continuity equation on the basis of the second 
point of view (Appendix 11), (b) solving the equation under a suitable 
initial condition, and (c) carrying out a backtransfer from the second to 
the actual first point of view (Appendix 11), giving the solution the 
physical meaning of the chromatogram. It is important to point out that, 
whereas the spatial coordinate of the actual flux in the spontaneous first 
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THEORY OF GRADIENT CHROMATOGRAPHY 133 

point of view has an extensive dimension, the spatial coordinate of the 
abstract flux in the second point of view has an intensive dimension; this 
intensive coordinate represents a “force” that accelerates the actual flux 
occurring in the extensive spatial coordinate. It can be considered that 
this mode of the theory is quite general; the present theory would 
therefore be applicable to more general analytical methods in which a 
flux of the sample molecules participates and where a certain gradient of 
the “force” accelerates the flux. 

Some experimental verifications of the theory are given in Ref. 2 for the 
case of HA chromatography. These verifications can be considered to be 
of general value since the basis of the theory is quite general (see above). 
Of course, the theory should still be verified by other experiments. 

APPENDIX I: LONGITUDINAL DIFFUSIONS IN THE COLUMN 
AND QUASI-STATIC CHROMATOGRAPHY 

The longitudinal molecular diffusion occurring in the column can, in 
general, be classified into three types that are associated with one 
another: (a) thermal Brownian diffusion, (b) diffusion due to the flow 
heterogeneity in the carrier liquid,* and (c) diffusion due to a finite 
transition rate of a molecule between the mobile and the stationary phase 
in the column (for c, see Ref. 12). 

Due to the additive property of flux, the flow heterogeneity in the 
carrier liquid in the column (cf. b) is classifiable into two types. Divide 
the column into a number of hypothetical microcolumns with diameters 
of the order of magnitude of the interdistances among packed particles in 
the column. Because of heterogeneity in interspaces among packed 
particles, the flow rate (in the longitudinal direction of the column) would 
fluctuate at random not only among different longitudinal positions on 
the same microcolumn but also among parts of different microcolumns 
existing within the same vertical section of the total column. The flow 
heterogeneity (occurring in the longitudinal direction of the column) that 
is brought about by this mechanism is called the first type of flow 
heterogeneity. Due to a viscous property of the liquid, however, it might 
be possible that the flow rate in an interstice in the column depends upon 
the distance from the surface of the packed particle. Therefore, even 
within a microcolumn a flow heterogeneity is realizable (second type of 
flow heterogeneity). 

*Diffusion due to flow heterogeneity is a concept that is intimately related to the concept 
of eddy diffusion. Here we avoid the use of this terminology (cf. Ref. I ) .  
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134 KAWASAKI 

The molecular diffusion (b) can be directly provoked by both the first 
and the second type of flow heterogeneity in the carrier liquid. It can also 
be provoked in association with a reciprocal motion of molecules 
between neighboring microcolumns, and with a vertical motion of 
molecules within a microcolumn. The mechanism of diffusion (b) that is 
not directly provoked by the flow heterogeneity is similar to that of 
diffusion (c). 

Quasi-static chromatography is here defined as chromatography in 
which the longitudinal molecular diffusion (b) that is directly provoked by 
the first type of flow heterogeneity in the carrier liquid is of overwhelming 
importance. Diffusion (b) which is directly provoked by the second type of 
flow heterogeneity, diffusion (b) which is provoked by the reciprocal 
motion of molecules between neighboring microcolumns, diffusion (b) 
which is provoked by the vertical motion of the molecules within a 
microcolumn, diffusion (a), and diffusion (c) all contribute only negli- 
gibly to the total longitudinal molecular diffusion in the column. 

Define an elementary volume 6V in the column, the cubic root of 
which is of the order of magnitude of the interdistances among packed 
particles in the column (which is of the same order of magnitude as the 
diameter of a microcolumn). &V has large enough dimensions for it to be 
a thermodynamic object. In the case of quasi-static chromatography it 
was previously assumed by its definition (see above) that a thermo- 
dynamic equilibrium is locally attained within any W(in  which the effect 
of the first type of flow heterogeneity is negligible) in any small time 
interval of the chromatographic process; the time interval is much 
smaller than the time that is necessary for the total molecular band to 
pass the longitudinal column position where 6V exists, but it is large 
enough for equilibrium to be virtually attained within 6V. 

APPENDIX II: TWO POINTS OF VIEW ON GRADIENT 
CHROMATOGRAPHY 

We here specify the two points of view on gradient chromatography, 
the first on which Eq. (1) or (4) is based, and the second on which Eq. (24) 
or (21) is based. Figure 1 summarizes the two points of view, where the 
abscissa L' and the ordinate m represent the general longitudinal column 
position (with dimensions of volume; see the explanation of the symbols 
at the end of the paper) and the concentration (or activity) of a 
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THEORY OF GRADIENT CHROMATOGRAPHY 

FIG. 1 .  Schematic representation of two points of view on gradient chromatography. 

component of the carrier liquid that constitutes a linear gradient in the 
column, respectively. The component of the carrier liquid (called the 
gradient element) usually represents inorganic ions in the cases of both 
ion exchange and HA chromatographies. In the case of reversed phase 
chromatography, it may be hydrophobic molecules (e.g., acetonitrile). 
The oblique line in Fig. 1 represents the linear concentration (or activity) 
gradient with slope g' occurring at time t .  The slope g' is defined as 
positive in order for it to have a dimension of concentration/volume (or 
activity/volume) representing the increase in m from the outlet to the inlet 
of the column; g' is independent of time t. LA and ma show the column 
position at which the beginning of the gradient exists and the concentra- 
tion (or activity) of the gradient element at the inlet of the column, 
respectively. mi, is the initial concentration (or activity) of the gradient 
element introduced at the inlet (L' = 0) of the column at time 0. This can 
be considered to be virtually equal to the concentration (or activity) at the 
beginning (15' = LL) of the gradient at time t. 

In the first point of vim,  it is the column itself that is fixed. Both the 
concentration (or activity) gradient and the band of the sample molecules 
migrate in the L' direction on the (L',m) plane; we call v; the migration 
velocity (in units of volume/time) of the gradient observed at a given 
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longitudinal position L’ on the column. Elution volume Y occurring at 
position L’ can be defined by Eq. (15) (see Fig. l), where both L‘ and mi, 
are constant, and both LA and m increase with time t, m being defined as 
the concentration (or activity) of the gradient element at the given column 
position L‘. Therefore, V increases with time t .  

In the second point of view, it is the concentration (or activity) gradient 
that is fixed. Both the column and the band of the sample molecules 
migrate in the m direction of the (L’,m) plane. It can be considered that 
the oblique line in Fig. 1 represents the linear “gradient” of column 
position L’ (with slope l/g’) rather than the linear concentration (or 
activity) gradient (with slopeg’). We call $the migration velocity [in units 
of concentration/time (or activity/time)] of the “gradient” along the 
concentration (or activity) gradient. Here, it is possible to find a 
parameter s [with a dimension of concentration (or activity)] that 
corresponds to Vin the first point of view, occurring at a given position m 
on the concentration (or activity) gradient. This can be defined by Eq. 
(16) (see Fig. I), where m is constant, and both m, and L‘ increase with 
time t, L’ now being defined as the longitudinal position on the column at 
which the concentration (or activity) of the gradient element is always 
equal to m. Therefore, s increases with time t. 

APPENDIX 111: FIRST PRINCIPLE OF CHROMATOGRAPHY 
IN GENERAL 

In any chromatography a first principle is that, within a vertical section 
at any longitudinal position on the column, the ratio RF of the migration 
rate of the sample molecules (of the chromatographic component under 
consideration) to that of the carrier liquid, on uveruge, is equal to the 
partition B of the molecules in the mobile phase; the average is taken for 
all molecules under consideration that pass the column section during 
the whole process of chromatography. This principle can also be stated in 
such a way that, provided the column is long enough for the total 
molecular band to exist on it at the same time, then at instant t, the mean 
relative migration rate & of the band is equal to the partition B in the 
mobile phase concerning all molecules that constitute the total band. & 
and B are equal to R F  and B occurring at the mean part of the band, 
respectively; at this part R F  (= &) is equal to B (= B). The mean part of 
the band is the part (with a virtually infinitesimal width) in which the 
effect of longitudinal molecular diffusion is always cnaceled out and 
where thermodynamic equilibrium is apparently realized between the 
mobile and the stationary phase. 
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SYMBOLS 

time 
any longitudinal position on the column, i.e., the distance from 
the column inlet 
any longitudinal position on the column represented as the 
sum of interstitial volumes involved between the column inlet 
and the column position, L, under consideration. In some 
instances, L’ represents the total column “length,” i.e., the total 
interstitial volumes involved in the column 
longitudinal column position (represented in units of volume) 
at which the beginning of the concentration (or activity) 
gradient exists 
longitudinal position (represented in units of volume; for 
details, see Ref. 3)  of a microcolumn at which the infinitesimal 
band of sample molecules (of the chromatographic component 
under consideration) exists 
elution volume 
mean concentration (or activity) of the gradient element in the 
mobile phase within any vertical section of the column. In 
some instances, m also represents the mean concentration (or 
activity) in the mobile phase within the last infinitesimal 
vertical section at the outlet of the column, or the solution that 
has just been eluted out of the column 
concentration (or activity) of the gradient element in the mobile 
phase at the inlet of the colunin 
initial concentration (or activity) of the gradient element in the 
mobile phase at the beginning of the concentration (or activity) 
gradient 
concentration (or activity) of the gradient element in the mobile 
phase within the vertical section of the microcolumn at 
position L; where the infinitesimal band of sample molecules 
(of the chromatographic component under consideration) 
exists. In some instances, rnl also represents the concentration 
(or activity) of the gradient element in the mobile phase within 
any vertical section of the microcolumn 
mean concentration (or activity) of the gradient element in the 
mobile phase within the vertical section of the column at which 
the mean part of the band of sample molecules (of the 
chromatographic component under consideration) exists 
symbol representing m, rnh, or p, depending upon the case 
positive constant [with a dimension of concentration/volume 
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S 

SA 

n 

C 

X 

B 

B’ 

(or activity/volume)] representing the slope of the concentra- 
tion (or activity) gradient in the column. This is expressed as 
the increase in the concentration (or activity) per unit “length 
of the column, measured from the outlet to the inlet; the 
column “length is represented in units of volume 
parameter [with a dimension of concentration (or activity)] 
defined by Eq. (16) 
parameter [with a dimension of concentration (or activity)] 
defined by Eq. (29) or Eq. (33) 
mean total density of sample molecules (of the chromato- 
graphic component under consideration) in both the mobile 
and stationary phases in a vertical column section 
mean density of sample molecules (of the chromatographic 
component under consideration) in the mobile phase in a 
vertical column section. C is related to s1 by Eq. (18) 
mean density of sample molecules (of the chromatographic 
component under consideration) in the stationary phase in a 
vertical column section. x is related to both s1 and C by Eq. 
(13) 
partition of sample molecules (of the chromatographic com- 
ponent under consideration) in the mobile phase in a vertical 
column section, or the ratio of the amount of molecules in the 
mobile phase to the total amount in that column section. 
Therefore, B varies between 0 and 1 
partition of sample molecules (of the chromatographic com- 
ponent under consideration) in the mobile phase in a vertical 
section of a microcolumn. Therefore, B’ varies between 0 and 
1 
migration velocity (represented in units of volume/time) of the 
concentration (or activity) gradient in the L‘ direction on the 
(L’,m) plane 
migration velocity [represented in units of concentration/time 
(or activity/time)] of the “gradient” (cf. Appendix 11) in the m 
direction on the ( L ’ p )  plane 
diffusion coefficient for the longitudinal diffusion in the 
column that is directly provoked by the first type of flow 
heterogeneity in the carrier liquid. D’ is represented in units of 
volume2/time (instead of length2/time) since longitudinal col- 
umn position L’ is represented in units of volume. D‘ can be 
considered to be proportional to Ivdl, at least in the case of 
laminar flow 
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Illhe.,,, thermal Brownian diffusion constant of sample molecules (of 
the chromatographic component under consideration) in the 
interstitial liquid in the column, represented in units of length'/ 
time 
positive constant (with dimensions of volume2/time) defined by 

parameter [with dimensions of concentration2/time (or activ- 
ity'hime)] defined by Eq. (22) 
parameter (with dimensions of volume) defined by Eq. (2). 8 
can be considered to be independent of the flow rate of 
chromatography, at least in the case of laminar flow. 
parameter (with dimensions of volume) defined by Eq. (1 1 

Dihe.,,, 

D* 

0 

(L'/L)2 Dtherm 

Othe.,,, 
4 positive constant 
0' positive constant 
X' positive constant. For the physical meaning of x', see text 
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