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General Theory of Quasi-Static Linear Gradient
Chromatography

TSUTOMU KAWASAKI

JAPAN BIOMEDICAL MATERIAL RESEARCH CENTER
KOKEN CO. LTD.
2-11-21 NAKANE, MEGURO-KU, TOKYO 152, JAPAN

Abstract

The ecarlier theory of hydroxyapatite chromatography is extended to a general
theory of quasi-static linear gradient chromatography. The present theory is
partially valid for the nonquasi-static case.

INTRODUCTION

In earlier papers (/-11) a theory of linear gradient hydroxyapatite (HA)
chromatography was developed. The major part of the theory is valid for
any quasi-static chromatographies (see Appendix I); some parts are even
valid for the nonquasi-static case.

The purpose of the present paper is to rearrange the earlier theory (/-
11), specifying the parts that are common to any chromatography,
thereby establishing a general theory of linear gradient chromatography.
In order to simplify the argumen, however, we here limit ourselves to the
case where mutual molecular interactions are negligible.

Brief explanations of any symbols involved in the equations are given
at the end of this paper.
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THEORETICAL

(A) Fundamental Continuity Equation for Gradient Chromatography

The purpose of this section is to confirm that Eq. (21) in Scheme 1 (pp.
123-125) (first derived as Eg. 17 in Ref. 3 for HA chromatography) is
quite general, and that it represents the fundamental continuity equation
for any quasi-static chromatography with linear gradient elution.

Scheme 1 briefly summarizes the derivation of Eq. (21). Thus, Eq. (21)
can be derived from Eq. (1), a continuity equation for any quasi-static
chromatography; Eq. (1) is based upon a spontaneous image under-
standable from the first point of view on gradient chromatography
(Appendix II). However, although an isocratic chromatographic process
can be causally described by Eq. (1), it is impossible in principle for a
gradient chromatographic process to be described by Eq. (1); it is Eq. (21)
that causally describes the gradient chromatography (see Ref. 3). Equa-
tion (21) is based upon an abstract image understandable from the
second point of view (Appendix II).

Let us follow the derivation of Eq. (21) (or Eq. 24) from Eq. (1) in
Scheme 1. Thus, Eq. (4) is first derived from Eq. (1) by using elution
volume V instead of time ¢ the transformation from r to V is possible
since, in the first point of view, V increases with ¢ (Appendix II). In other
words, V' is a chromatographic expression of time.

Equation (6) is a more precise expression of Eq. (4) in which account is
taken of the thermal Brownian longitudinal diffusion in the interstitial
liquid in the column that is negligible in the quasi-static case (Appendix
I).

The derivation of Eq. (8) from Eq. (6) is carried out following a
hypothesis according to which any type of flow heterogeneity (Appendix
1) declines and becomes negligible in the column. As a result, with Eq. (8),
no longitudinal diffusions survive in the column except Brownian
diffusion.

Equation (14) represents the ideal case when even the Brownian
longitudinal diffusion has declined completely and become null. The
derivation of Eq. (14) from Eq. (8) is a key point in understanding the
theory of gradient chromograpfy; the ideal equation with no longitudinal
diffusion in the column (Eq. 14) can be obtained by substituting Fick’s
second law (Eq. 9 or 12) into Eq. (8). (The situation can be compared with
the case of isocratic chromatography when the ideal equation with no
longitudinal diffusion can be obtained if Dy, or 0., tends to 0. For
details, see Ref. I, Appendix I1.)
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SCHEME 1. Derivation of the fundamental differential equation for gradient chromtography.

Equation (17) is another expression of Eq. (14) represented in terms of
variables s and m instead of L’ and V, respectively. Since g’ is constant, s
and m increase with increases in L' and ¥ (i.e., 1), respectively (see Egs. 15
and 16). In other words, s and m still conserve the physical meanings of
spatial coordinate and time, respectively. (The flow represented by Eq. 17
is called intermediate abstract flow; Eq. 17 is used for the approximate
theory of gradient chromatography in which account is taken of mutual
molecular interactions; see Refs. 8 and /1.)

The derivation of Eq. (19) from Eq. (17) is another key point in
understanding the theory of gradient chromatography. Thus, the trans-
formation from Eq. (17) to Eq. (19) corresponds to the transfer from the
first to the second point of view on gradient chromatography (Appendix
IT); spatial coordinate L' or s in the first point of view is reinterpreted as
time in the second point of view, and time V or m is reinterpreted as
spatial coordinate. Equation (19) (as well as Eq. 17, which is equivalent to
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Eq. 19 except for the point of view) represents the fundamental continuity
equation with linear gradient chromatography for the ideal case when
there is no longitudinal diffusion in the column. Equation (19) (or Eq. 17)
also represents the behavior of the mean part, with an infinitesimal
width, of the actual molecular band migrating on the column; in this part
of the band the effect of diffusion is always canceled out, and the
relationship R, = B is fulfilled (see Appendix III).

The fundamental differential equation, Eq. (21), can be derived from
Eq. (19) by adding a diffusive term to Eq. (19). For the determination of
the form of the diffusive term, see below.

Equation (24) is another expression of Eq. (21) obtained by using time ¢
instead of “time” s. The form of the diffusive term in Eq. (24) is
determined by comparing Eq. (24) with Eq. (1); it is determined in order
for the abstract flux J* (in Eq. 24) to coincide, at any instant ¢, with the
actual flux J (in Eq. 1) at the outlet of the column (see Ref. 3). The form of
the diffusive term in Eq. (21) can be derived from the diffusive term in Eq.
(24).

The process of deriving Eq. (24) from Eq. (1) is reversible, i.e., Eq. (1)
can be derived from Eq. (24). This means that Eq. (24) or (21) is valid for
any quasi-static chromatography with linear gradient elution since Eq.
(1) represents a continuity equation for any quasi-static chromatography.

Scheme 1 itself constitutes a proof that the gradient chromatographic
process can be causally described by Eq. (21) instead of Eq. (1) (see Ref. I,
Appendix II, and Ref. 3). Another proof is given in the section entitled
“General Method of Finding the Flux in Any Type of Chromatography”
in Ref. 3

On the basis of the first principle of chromatography (Appendix III}, it
can be understood that Egs. (14), (17), and (19) are even valid for the
nonquasi-static case. In fact, even in the nonquasi-static case, the
relationship R, = B is fulfilled in the mean part of the molecular band
migrating on the column, and Eqgs. (14), (17), and (19) represent the
behavior of this part of the band.

The theoretical chromatogram can be obtained 1) if Eq. (21) is solved
under a suitable initial condition, and 2) if a backtransfer is made from
the second to the first point of view on gradient chromatography, giving s
the physical meaning of the product of the slope g’ of the concentration
(or activity) gradient and the total length L’ of the column (see Eq. 16).
[Hereafter we simply use “concentration” instead of “concentration (or
activityy”.]
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(B) Form of the Function B(s,m)

The purpose of this section is to determine a possible form of the
function B(s,m) appearing in Eq. (21).

With quasi-static chromatography it is reasonable to assume (a) that
the longitudinal diffusion of the sample molecules occurs in parallel with
that of the gradient element in the column (since both diffusions are
directly provoked by the first type of flow heterogeneity in the carrier
liquid, see Appendix I; for gradient element, see Appendix II), and (b)
that the linear concentration gradient is virtually undisturbed by 1) the
(longitudinal) diffusion of the gradient element in the column (the
diffusion effect is canceled out among different column sections), 2) the
presence of the sample molecules, and 3) the fixation (if it occurs) of the
gradient element on the packed particles in the column.

Now, let us suppose the case when a band of the sample molecules with
an infinitesimal width is formed initially at the inlet of the column. When
the migration of the molecular band begins, the width of the band
becomes finite due to diffusion. Under this situation, the function B(s,m)
has the form

B(s,m) = B'[m)(s,m)] (25)

where the function m;,(s,m) is represented implicitly as

m=m, +r(m)—s (26)
with
_ (™ _B'(my
r(m;) = J""in 1 B’(Amx) dm 27)

From its physical meaning (see the explanation of the symbols at the end
of the paper) it can, in general, be assumed that B’ is a monotonical

function of m,, increasing from <0 to 1 with an increase in m, from m,, to
0,

Proof (Step 1) Let us divide the column into a number of hypothetical
microcolumns with diameters of the order of magnitude of the inter-
distances among packed particles in the column (cf. Appendix I). We
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characterize the microcolumns in such a way (a) that the volume of the
liquid that flows into (and out of) any microcolumn is the same within
any unit time interval, and (b) no longitudinal diffusion occurs within a
microcolumn. [Actually, Hypothesis b is unrealizable. With quasi-static
chromatography, however, the longitudinal diffusion within the micro-
columns is negligible in comparison with the diffusion that is directly
provoked by the first type of flow heterogeneity in the carrier liquid
(Appendix I). This means that Hypothesis b, although it is untrue, is a
reasonable assumption for the final result of the calculation.]

Let us consider the state within any cross section of the total column
existing between positions L’ and L’ + dL’' at time . When the mean
concentration of the gradient element in this column section is between
m and m + dm, then the concentrations m, of the gradient element within
the cross sections of the microcolumns (belonging in this total column
section) are distributed around the mean value m (as a result of
longitudinal diffusion). Therefore, in some microcolumns the concentra-
tion of the gradient element is distributed within a certain infinitesimal
range between m, and m, + dm,. On the other hand, since (a) a band of
the sample molecules with an infinitesimal width is formed initially at
the inlet of the column, (b) the longitudinal diffusion of the sample
molecules occurs in parallel with that of the gradient element in the
column (provoked by the first type of flow heterogeneity; Fundamental
Assumption a), and (c) no longitudinal diffusion occurs within a
microcolumn (Hypothesis b), then it is only in some microcolumns in
which the concentration of the gradient element resides within a certain
infinitesimal range (between m, and m, + dm,) that sample molecules
appear at time t. This means that the function B(sm) has a form
represented by Eq. (25); it can be considered that m, is a function of both
m and s because m, depends upon both the mean concentration m and
the distribution in the concentration. This latter depends upon “time”
5.

(Step 2) Let us consider the state within a microcolumn in which a
molecular band with an infinitesimal width is migrating. The migration
of the band can be described (see Ref. 3, Appendix) by

dsy — B'(m,)
dmk 1 - B,(m;\) (28)

where

5, =g'Ly (29)
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and L; represents the longitudinal position of the infinitesimal molecular
band in the microcolumn; in Eq. (28), m, represents the concentration of
the gradient element at position L,. Since, at the inlet of the column, both
relationships

Lyors, =0 (30)
and

m; =m;, (31

are initially fulfilled, Eq. (28) can be integrated to give

sy = r(my) (32)

where r(m,) is defined by Eq. (27). On the other hand, s, can be written
as

Sy, = My — m,, (33)
(see Ref. 3, Appendix), and, by substituting Eq. (32) into Eq. (33),
r(my) = mo — m, (34)

is obtained. Now, by eliminating m, between Eq. (34) and the left-hand
side equation in Eq. (16), Eq. (26) can be obtained.

(C) Solution of Eq. (21)

We here consider solving Eq. (21) when the function B(s,mm) has a form
represented by both Eqs. (25) and (26). It should be recalled, however,
that a physical meaning has been given to Eq. (25) only when the initial
molecular band at the inlet of the column has an infinitesimal width (see
Section B). We therefore solve Eq. (21) under the compatible initial
condition:

C(s = +0.m) = d(m — my,) (35)

(for a more precise expression of Eq. 35, see Ref. 5). It should be
emphasized that, although Eq. (21) might have solutions under other
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initial conditions [provided the function B(s,m) is represented by both
Egs. 25 and 26}, the physical meanings of these solutions are unclear.
Under the condition of Eq. (35), Eq. (21) has a solution

_ lmy=my’
c=—L .7 %o . B(my (36)

\/4ng'Bs

(This can be confirmed if Eq. 36 is substituted into Eq. 21, although the
calculation is somewhat laborious.) If the backtransfer is made from the
second to the first point of view (giving s the physical meaning of the
product of g’ and L'), then Eq. (36) represents, with Eq. (26), a theoretical
chromatogram as a function of m for a column of length L' and a slope g’
of the concentration gradient.

(D) Approximate Expression of Eq. (21) and the Theoretical
Chromatogram Obtained under Any Initial Condition

The purpose of this section is to derive a simpler expression of Eq. (21);
this can be solved under any initial condition, and the theoretical
chromatogram under any initial chromatographic condition can be
obtained.

Thus, in many instances, the range of the concentration gradient over
which a chromatographic peak appears is small around the concentra-
tion p at which the mean part of the peak exists. Under the approxima-
tion that the concentration over which a chromatographic peak appears
is constant, being equal to p, Eq. (21) reduces to a simpler equation:

. d s L 0°C _ 1-B(s) oC , oC
g0 ds { [E(s)]z} om? B(s) om * os (37)
where
B(s) = B'[u(s)] (38)
and p(s) can be implicitly represented by
- _ (" B
e e o (39)
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(for the derivation of Eq. 37, see below and Ref. 6). Under a general initial
condition:

C(s = +0,m) = Cy(m) (40)
where Cy(m) is any function. Equation (37) has a solution:

_ lm=m+m— )

C = ————3;10.@) . J; Co(m') e 2Hotal” -dm'’ (41)

where

o(s) = Y2£'0 42)

B(s)

[The solution (Eq. 41) can be obtained by using the Fourier transforma-
tion method; see Ref. 6.] If the backtransfer is made from the second to
the first point of view, Eq. (41) represents a theoretical chromatogram
obtained under any initial chromatographic condition. In the special
case when the initial condition, Eq. (40), has the form of Eq. (35), Eq. (41)
reduces to a Gaussian form:

1 _m=u))?

C= —— . 2o(s)]* 43
VZroG) e 2oy (43)

(see Ref. 6).

The approximate differential equation, Eq. (37), can be derived in the
following way. First, Eq. (43) is derived from the pair of Egs. (26) and (36)
by carrying out a Taylor expansion of n(m,) around p, and neglecting high
order terms (4, 6). Second, the form of the differential equation, Eq. (37),
is determined in order for it to generate Eq. (43) as a solution under the
initial condition given by Eq. (35) (6). What is important is that Eq. (37)
can generate a solution (Eq. 41) under the general initial condition given
by Eq. (40).

(E) Competition Model

If the fixation (adsorption) and dissociation (desorption) mechanism
of the sample molecules in the column is specified, the concrete form of



13:17 25 January 2011

Downl oaded At:

132 KAWASAKI

the function B'(m") (where m' may be m;, or y; cf. Egs. 26, 27, 36, 38, 39, 41~
43) can be determined, and the concrete theoretical chromatogram can
be obtained.

In earlier papers (I~11) a competition model was introduced for the
adsorption and desorption mechanism in the HA column. The model
states that adsorbing sites are arranged in some manner on the surfaces
of the packed particles (HA crystals) in the column; the sample molecules
(with adsorption groups) and the gradient element compete for adsorp-
tion onto the sites of the packed particles. A gradient element covers a
single site when it is adsorbed, whereas a sample molecule, in general,
covers plural sites. On the basis of the competition model, the function
B’(m") can be represented (see Ref. /, Appendix 1) as

1
1+ ge'm' + 1)~

B'(m’) = (44)

where g, ¢', and x' are positive constants. x' represents the number of
adsorbing sites of the packed particle covered by an adsorbed sample
molecule.

By using Eq. (44), both Egs. (39) and (42) can be rewritten as

uis) = é (" + Do'gs + (o'my, + IV — 1) (45)

and

o(s) = v/2g'8s{1 + glo'u(s) + 1]} (46)

respectively. If the sample molecule has large molecular dimensions
(x' > 1), u(s) (Eq. 45) tends to a constant value m° independent of 5; o(s)
(Eq. 46) tends to 1/2¢'0s at the same time (see Refs. 1 and 3).

DISCUSSION

The present theory of gradient chromatography consists of (a)
proposing an abstract continuity equation on the basis of the second
point of view (Appendix II), (b) solving the equation under a suitable
initial condition, and (c) carrying out a backtransfer from the second to
the actual first point of view (Appendix II), giving the solution the
physical meaning of the chromatogram. It is important to point out that,
whereas the spatial coordinate of the actual flux in the spontaneous first
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point of view has an extensive dimension, the spatial coordinate of the
abstract flux in the second point of view has an intensive dimension; this
intensive coordinate represents a “force” that accelerates the actual flux
occurring in the extensive spatial coordinate. It can be considered that
this mode of the theory is quite general; the present theory would
therefore be applicable to more general analytical methods in which a
flux of the sample molecules participates and where a certain gradient of
the “force” accelerates the flux.

Some experimental verifications of the theory are given in Ref. 2 for the
case of HA chromatography. These verifications can be considered to be
of general value since the basis of the theory is quite general (see above).
Of course, the theory should still be verified by other experiments.

APPENDIX I: LONGITUDINAL DIFFUSIONS IN THE COLUMN
AND QUASI-STATIC CHROMATOGRAPHY

The longitudinal molecular diffusion occurring in the column can, in
general, be classified into three types that are associated with one
another: (a) thermal Brownian diffusion, (b) diffusion due to the flow
heterogeneity in the carrier liquid,* and (c) diffusion due to a finite
transition rate of a molecule between the mobile and the stationary phase
in the column (for c, see Ref. 12).

Due to the additive property of flux, the flow heterogeneity in the
carrier liquid in the column (cf. b) is classifiable into two types. Divide
the column into a number of hypothetical microcolumns with diameters
of the order of magnitude of the interdistances among packed particles in
the column. Because of heterogeneity in interspaces among packed
particles, the flow rate (in the longitudinal direction of the column) would
fluctuate at random not only among different longitudinal positions on
the same microcolumn but also among parts of different microcolumns
existing within the same vertical section of the total column. The flow
heterogeneity (occurring in the longitudinal direction of the column) that
is brought about by this mechanism is called the first type of flow
heterogeneity. Due to a viscous property of the liquid, however, it might
be possible that the flow rate in an interstice in the column depends upon
the distance from the surface of the packed particle. Therefore, even
within a microcolumn a flow heterogeneity is realizable (second type of
flow heterogeneity).

*Diffusion due to flow heterogeneity is a concept that is intimately related to the concept
of eddy diffusion. Here we avoid the use of this terminology (cf. Ref. /).
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The molecular diffusion (b) can be directly provoked by both the first
and the second type of flow heterogeneity in the carrier liquid. It can also
be provoked in association with a reciprocal motion of molecules
between neighboring microcolumns, and with a vertical motion of
molecules within a microcolumn. The mechanism of diffusion (b) that is
not directly provoked by the flow heterogeneity is similar to that of
diffusion (c).

Quasi-static chromatography is here defined as chromatography in
which the longitudinal molecular ditfusion (b) that is directly provoked by
the first type of flow heterogeneity in the carrier liquid is of overwhelming
importance. Diffusion (b) which is directly provoked by the second type of
flow heterogeneity, diffusion (b) which is provoked by the reciprocal
motion of molecules between neighboring microcolumns, diffusion (b)
which is provoked by the vertical motion of the molecules within a
microcolumn, diffusion (a), and diffusion (c) all contribute only negli-
gibly to the total longitudinal molecular diffusion in the column.

Define an elementary volume 8V in the column, the cubic root of
which is of the order of magnitude of the interdistances among packed
particles in the column (which is of the same order of magnitude as the
diameter of a microcolumn). 6 has large enough dimensions for it to be
a thermodynamic object. In the case of quasi-static chromatography it
was previously assumed by its definition (see above) that a thermo-
dynamic equilibrium is locally attained within any 8V (in which the effect
of the first type of flow heterogeneity is negligible) in any small time
interval of the chromatographic process; the time interval is much
smaller than the time that is necessary for the total molecular band to
pass the longitudinal column position where 8V exists, but it is large
enough for equilibrium to be virtually attained within 8V.

APPENDIX Il: TWO POINTS OF VIEW ON GRADIENT
CHROMATOGRAPHY

We here specify the two points of view on gradient chromatography,
the first on which Eq. (1) or (4) is based, and the second on which Eq. (24)
or (21) is based. Figure 1 summarizes the two points of view, where the
abscissa L' and the ordinate m represent the general longitudinal column
position (with dimensions of volume; see the explanation of the symbols
at the end of the paper) and the concentration (or activity) of a
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FI1G. 1. Schematic representation of two points of view on gradient chromatography.

component of the carrier liquid that constitutes a linear gradient in the
column, respectively. The component of the carrier liquid (called the
gradient element) usually represents inorganic ions in the cases of both
ton exchange and HA chromatographies. In the case of reversed phase
chromatography, it may be hydrophobic molecules (e.g., acetonitrile).
The oblique line in Fig. 1 represents the linear concentration (or activity)
gradient with slope g’ occurring at time r. The slope g’ is defined as
positive in order for it to have a dimension of concentration/volume (or
activity/volume) representing the increase in m from the outlet to the inlet
of the column; g’ is independent of time ¢ L; and m, show the column
position at which the beginning of the gradient exists and the concentra-
tion (or activity) of the gradient element at the inlet of the column,
respectively. m,, is the initial concentration (or activity) of the gradient
element introduced at the inlet (L’ = 0) of the column at time 0. This can
be considered to be virtually equal to the concentration (or activity) at the
beginning (L' = Lg) of the gradient at time ¢.

In the first point of view, it is the column itself that is fixed. Both the
concentration (or activity) gradient and the band of the sample molecules
migrate in the L' direction on the (L',m) plane; we call v; the migration
velocity (in units of volume/time) of the gradient observed at a given
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longitudinal position L’ on the column. Elution volume ¥ occurring at
position L' can be defined by Eq. (15) (see Fig. 1), where both L’ and m;,
are constant, and both Ly and m increase with time ¢, m being defined as
the concentration (or activity) of the gradient element at the given column
position L'. Therefore, V increases with time .

In the second point of view, it is the concentration (or activity) gradient
that is fixed. Both the column and the band of the sample molecules
migrate in the m direction of the (L’,m) plane. It can be considered that
the oblique line in Fig. 1 represents the linear “gradient” of column
position L' (with slope 1/g') rather than the linear concentration (or
activity) gradient (with slope g'). We call v¥the migration velocity [in units
of concentration/time (or activity/time)] of the “gradient” along the
concentration (or activity) gradient. Here, it is possible to find a
parameter s [with a dimension of concentration (or activity)] that
corresponds to V'in the first point of view, occurring at a given position m
on the concentration (or activity) gradient. This can be defined by Eq.
(16) (see Fig. 1), where m is constant, and both m; and L’ increase with
time ¢, L' now being defined as the longitudinal position on the column at
which the concentration (or activity) of the gradient element is always
equal to m. Therefore, s increases with time .

APPENDIX HlI: FIRST PRINCIPLE OF CHROMATOGRAPHY
IN GENERAL

In any chromatography a first principle is that, within a vertical section
at any longitudinal position on the column, the ratio Ry of the migration
rate of the sample molecules (of the chromatographic component under
consideration) to that of the carrier liquid, on average, is equal to the
partition B of the molecules in the mobile phase; the average is taken for
all molecules under consideration that pass the column section during
the whole process of chromatography. This principle can also be stated in
such a way that, provided the column is long enough for the total
molecular band to exist on it at the same time, then at instant ¢ the mean
relative migration rate R, of the band is equal to the partition B in the
mobile phase concerning all molecules that constitute the total band. R-
and B are equal to R and B occurring at the mean part of the band,
respectively; at this part R (= R;) is equal to B (= B). The mean part of
the band is the part (with a virtually infinitesimal width) in which the
effect of longitudinal molecular diffusion is always cnaceled out and
where thermodynamic equilibrium is apparently realized between the
mobile and the stationary phase.
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time

any longitudinal position on the column, i.e,, the distance from
the column inlet

any longitudinal position on the column represented as the
sum of interstitial volumes involved between the column inlet
and the column position, L, under consideration. In some
instances, L' represents the total column “length,” i.e., the total
interstitial volumes involved in the column

longitudinal column position (represented in units of volume)
at which the beginning of the concentration (or activity)
gradient exists

longitudinal position (represented in units of volume; for
details, see Ref. 3) of a microcolumn at which the infinitesimal
band of sample molecules (of the chromatographic component
under consideration) exists

elution volume

mean concentration (or activity) of the gradient element in the
mobile phase within any vertical section of the column. In
some instances, m also represents the mean concentration (or
activity) in the mobile phase within the last infinitesimal
vertical section at the outlet of the column, or the solution that
has just been eluted out of the column

concentration (or activity) of the gradient element in the mobile
phase at the inlet of the column

initial concentration (or activity) of the gradient element in the
mobile phase at the beginning of the concentration (or activity)
gradient

concentration (or activity) of the gradient element in the mobile
phase within the vertical section of the microcolumn at
position L; where the infinitesimal band of sample molecules
(of the chromatographic component under consideration)
exists. In some instances, m, also represents the concentration
(or activity) of the gradient element in the mobile phase within
any vertical section of the microcolumn

mean concentration (or activity) of the gradient element in the
mobile phase within the vertical section of the column at which
the mean part of the band of sample molecules (of the
chromatographic component under consideration) exists
symbol representing m, m,, or y, depending upon the case
positive constant [with a dimension of concentration/volume
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(or activity/volume)] representing the slope of the concentra-
tion (or activity) gradient in the column. This is expressed as
the increase in the concentration (or activity) per unit “length”
of the column, measured from the outlet to the inlet; the
column “length” is represented in units of volume

parameter [with a dimension of concentration (or activity)]
defined by Eq. (16)

parameter [with a dimension of concentration (or activity)]
defined by Eq. (29) or Eq. (33)

mean total density of sample molecules (of the chromato-
graphic component under consideration) in both the mobile
and stationary phases in a vertical column section

mean density of sample molecules (of the chromatographic
component under consideration) in the mobile phase in a
vertical column section. C is related to Q by Eq. (18)

mean density of sample molecules {(of the chromatographic
component under consideration) in the stationary phase in a
vertical column section. y is related to both 0 and C by Eq.
(13)

partition of sample molecules (of the chromatographic com-
ponent under consideration) in the mobile phase in a vertical
column section, or the ratio of the amount of molecules in the
mobile phase to the total amount in that column section.
Therefore, B varies between 0 and 1

partition of sample molecules (of the chromatographic com-
ponent under consideration) in the mobile phase in a vertical
section of a microcolumn. Therefore, B’ varies between 0 and
1

migration velocity (represented in units of volume/time) of the
concentration (or activity) gradient in the L’ direction on the
(L' ,m) plane

migration velocity [represented in units of concentration/time
(or activity/time)] of the “gradient” (cf. Appendix IT) in the m
direction on the (L'm) plane

diffusion coefficient for the longitudinal diffusion in the
column that is directly provoked by the first type of flow
heterogeneity in the carrier liquid. D’ is represented in units of
volume?/time (instead of length?/time) since longitudinal col-
umn position L’ is represented in units of volume. D' can be
considered to be proportional to |v), at least in the case of
laminar flow
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thermal Brownian diffusion constant of sample molecules (of
the chromatographic component under consideration) in the
interstitial liquid in the column, represented in units of length?/
time

positive constant (with dimensions of volume*/time) defined by
(l‘,/[‘)2 . Dlherm

parameter [with dimensions of concentration’/time (or activ-
ity*/time)] defined by Eq. (22)

parameter (with dimensions of volume) defined by Eq. (2). 6
can be considered to be independent of the flow rate of
chromatography, at least in the case of laminar flow.
parameter (with dimensions of volume) defined by Eq. (11).
positive constant

positive constant

positive constant. For the physical meaning of x', see text
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